Sgs1 Helicase and Two Nucleases Dna2 and Exo1 Resect DNA Double-Strand Break Ends
نویسندگان
چکیده
Formation of single-strand DNA (ssDNA) tails at a double-strand break (DSB) is a key step in homologous recombination and DNA-damage signaling. The enzyme(s) producing ssDNA at DSBs in eukaryotes remain unknown. We monitored 5'-strand resection at inducible DSB ends in yeast and identified proteins required for two stages of resection: initiation and long-range 5'-strand resection. We show that the Mre11-Rad50-Xrs2 complex (MRX) initiates 5' degradation, whereas Sgs1 and Dna2 degrade 5' strands exposing long 3' strands. Deletion of SGS1 or DNA2 reduces resection and DSB repair by single-strand annealing between distant repeats while the remaining long-range resection activity depends on the exonuclease Exo1. In exo1Deltasgs1Delta double mutants, the MRX complex together with Sae2 nuclease generate, in a stepwise manner, only few hundred nucleotides of ssDNA at the break, resulting in inefficient gene conversion and G2/M damage checkpoint arrest. These results provide important insights into the early steps of DSB repair in eukaryotes.
منابع مشابه
Relationship of DNA degradation by Saccharomyces cerevisiae exonuclease 1 and its stimulation by RPA and Mre11-Rad50-Xrs2 to DNA end resection.
Homologous recombination is a major pathway for repair of DNA double-strand breaks. This repair process is initiated by resection of the 5′-terminated strand at the break site. In yeast, resection is carried out by three nucleolytic complexes: Mre11-Rad50-Xrs2, which functions at the initial step and also stimulates the two processive pathways, Sgs1-Dna2 and Exonuclease 1 (Exo1). Here we invest...
متن کاملSaccharomyces cerevisiae Mre11/Rad50/Xrs2 and Ku proteins regulate association of Exo1 and Dna2 with DNA breaks.
Single-stranded DNA constitutes an important early intermediate for homologous recombination and damage-induced cell cycle checkpoint activation. In Saccharomyces cerevisiae, efficient double-strand break (DSB) end resection requires several enzymes; Mre11/Rad50/Xrs2 (MRX) and Sae2 are implicated in the onset of 5'-strand resection, whereas Sgs1/Top3/Rmi1 with Dna2 and Exo1 are involved in exte...
متن کاملThe RecQ DNA helicase Rqh1 constrains Exonuclease 1-dependent recombination at stalled replication forks
DNA double-strand break (DSB) repair by homologous recombination (HR) involves resection of the break to expose a 3' single-stranded DNA tail. In budding yeast, resection occurs in two steps: initial short-range resection, performed by Mre11-Rad50-Xrs2 and Sae2; and long-range resection catalysed by either Exo1 or Sgs1-Dna2. Here we use genetic assays to investigate the importance of Exo1 and t...
متن کاملNucleases and helicases take center stage in homologous recombination.
Homologous recombination (HR)-mediated DNA double-strand break repair maintains genome integrity. Although long-studied, an understanding of two essential steps in this process -- the resection of DNA ends to produce recombinogenic 3' single-stranded DNA tails and the resolution of recombination intermediates -- has remained elusive. Recent findings show an unexpected role for the Sgs1 (BLM) he...
متن کاملFission Yeast Exo1 and Rqh1-Dna2 Redundantly Contribute to Resection of Uncapped Telomeres
The uncapping of telomeres induces a DNA damage response. In Schizosaccharomyces pombe, deletion of pot1+ causes telomere uncapping and rapid telomere resection, resulting in chromosome fusion. Using the nmt-pot1-aid strain, we previously reported that Pot1 shut-off causes telomere loss and chromosome fusion in S. pombe. However, the factors responsible for the resection of uncapped telomeres r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell
دوره 134 شماره
صفحات -
تاریخ انتشار 2008